Freshwater connectivity can transport environmental DNA through the landscape
A new paper published in the journal Proceedings of the Royal Society B used environmental DNA (eDNA) metabarcoding to analyze fish and zooplankton communities.
The study found that the movement of water between freshwater bodies, or freshwater connectivity, can transport eDNA. This highlights the potential of eDNA to provide a comprehensive view of freshwater biodiversity.
Aquatic ecosystems are connected by waterways, which allow fish, plants, and other organisms to move from one place to another. This connectivity is important for the resilience of aquatic populations, but it can also make it difficult to track the DNA of these organisms.
The study, led by Dr Joanne Littlefair, a lecturer in biological sciences at Queen Mary University of London, looked at three lake networks containing 21 lakes in Canada’s Boreal Forest at IISD Experimental Lakes Area. The researchers found that within-lake eDNA generally reflected the habitat preferences of the species, but that some eDNA was also transported into downstream lakes. Lakes with a higher degree of connectivity had more eDNA detections that could not be explained by conventional monitoring techniques.
The findings have implications for the use of eDNA to monitor biodiversity in freshwater ecosystems. eDNA is a promising tool for biodiversity monitoring, but data must be interpreted in light of connectivity in the landscape.
“eDNA can be used to detect the presence of species that are not easily monitored using conventional methods, including invasive species, or for monitoring the presence of rare or endangered species,” said Dr Littlefair”.
“But it’s not all bad news. Our study showed that eDNA surveys can be carefully designed to consider the connectivity of the freshwater system being studied. In systems with high levels of connectivity, it is important to collect samples from multiple locations, which will allow us to build a complete picture of the biodiversity present”.
The study also highlights the need for more research on the factors, such as effects of water movement, influencing the spatial resolution of eDNA detection. For example, if the water in an ecosystem is moving quickly, then it may be necessary to collect more samples to increase the chances of detecting eDNA. This research will help to improve scientists' understanding of how eDNA can be used to monitor and conserve aquatic biodiversity.
The study was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC) and the WSP Montreal Environment department. The study was a collaboration between researchers from the UK’s Queen Mary University of London and the following Canadian institutions: McGill University, Lakehead University, IISD Experimental Lakes Area, and SHARCNET. Dr Littlefair worked at McGill University and then QMUL during the study.
About IISD
The International Institute for Sustainable Development (IISD) is an award-winning independent think tank working to accelerate solutions for a stable climate, sustainable resource management, and fair economies. Our work inspires better decisions and sparks meaningful action to help people and the planet thrive. We shine a light on what can be achieved when governments, businesses, non-profits, and communities come together. IISD’s staff of more than 250 experts come from across the globe and from many disciplines. With offices in Winnipeg, Geneva, Ottawa, and Toronto, our work affects lives in nearly 100 countries.
You might also be interested in
Microplastics now pervasive in Great Lakes, with 90% of water samples surpassing safe levels for aquatic wildlife: new studies
Data spanning the last ten years reveal that the Great Lakes basin is widely contaminated with microplastics, with potentially dangerous consequences for the wildlife that live within.
COMMENTARY: Can we afford to continue removing wetlands from New Brunswick?
Industrial parks and wetlands; can we have both? Moncton Industrial Development Ltd. filed an environmental impact assessment in December to build an industrial park covering about 259 acres between Berry Mills Road and the CN rail yard. The site is currently a primarily tree-covered lot which includes wetlands and watercourses.
Source to Sea: Integrating the water agenda in 2023
2023 could prove to be a definitive year for facilitating an integrative perspective on water issues, from fresh water to the marine environment.
National State of the Environment Report: Uzbekistan
The National State of the Environment Report (NSoER) is a comprehensive document that provides a snapshot of current environmental trends in Uzbekistan's socio-economic development for citizens, experts, and policy-makers in the country of Uzbekistan.